Course
Introduction
Print an Integer (Entered by the User)Add Two IntegersMultiply two Floating Point NumbersFind ASCII value of a characterCompute Quotient and RemainderSwap Two NumbersCheck Whether a Number is Even or OddFind the Frequency of Character in a StringRemove All Whitespaces from a StringRound a Number to n Decimal PlacesDecision Making and Loop
Check Whether an Alphabet is Vowel or ConsonantFind the Largest Among Three NumbersFind all Roots of a Quadratic EquationCheck Leap YearCheck Whether a Number is Positive or NegativeCheck Whether a Character is Alphabet or NotCalculate the Sum of Natural NumbersFind Factorial of a NumberGenerate Multiplication TableDisplay Fibonacci SeriesFind GCD of two NumbersFind LCM of two NumbersDisplay Characters from A to Z using loopCount Number of Digits in an IntegerReverse a NumberCalculate the Power of a NumberCheck Whether a Number is Palindrome or NotCheck Whether a Number is Prime or NotDisplay Prime Numbers Between Two IntervalsCheck Armstrong NumberDisplay Armstrong Number Between Two IntervalsDisplay Factors of a NumberMake a Simple Calculator Using switch...caseCount the Number of Vowels and Consonants in a SentenceSort Elements in Lexicographical Order (Dictionary Order)Create Pyramid and PatternFunctions
Display Prime Numbers Between Intervals Using FunctionDisplay Armstrong Numbers Between Intervals Using FunctionCheck Whether a Number can be Expressed as Sum of Two Prime NumbersFind the Sum of Natural Numbers using RecursionFind Factorial of a Number Using RecursionFind G.C.D Using RecursionConvert Binary Number to Decimal and vice-versaConvert Octal Number to Decimal and vice-versaConvert Binary Number to Octal and vice-versaReverse a Sentence Using Recursioncalculate the power using recursionArrays
Calculate Average Using ArraysFind Largest Element in an ArrayCalculate Standard DeviationAdd Two Matrix Using Multi-dimensional ArraysMultiply to Matrix Using Multi-dimensional ArraysMultiply two Matrices by Passing Matrix to a FunctionFind Transpose of a MatrixPrint an ArrayConcatenate Two ArraysConvert Character to String and Vice-VersaCheck if An Array Contains a Given ValueCollections
Join Two ListsConvert List (ArrayList) to Array and Vice-VersaConvert Map (HashMap) to ListConvert Array to Set (HashSet) and Vice-VersaSort a Map By ValuesObject and Class
Add Two Complex Numbers by Passing Class to a FunctionCalculate Difference Between Two Time PeriodsAdvanced
Convert String to DateGet Current Date/TImeConvert Milliseconds to Minutes and SecondsAdd Two DatesGet Current Working DirectoryConvert Byte Array to HexadecimalCreate String from Contents of a FileAppend Text to an Existing FileConvert a Stack Trace to a StringConvert File to byte array and Vice-VersaConvert InputStream to StringConvert OutputStream to StringLookup enum by String valueCompare StringsSort ArrayList of Custom Objects By PropertyCheck if a String is NumericJava Program to Multiply Two Matrix Using Multi-dimensional Arrays
To understand this example, you should have the knowledge of the following Java programming topics:
For matrix multiplication to take place, the number of columns of first matrix must be equal to the number of rows of second matrix. In our example, i.e.
c1 = r2
Also, the final product matrix is of size r1 x c2
, i.e.
product[r1][c2]
You can also multiply two matrices using functions.
Example: Program to Multiply Two Matrices
public class MultiplyMatrices {
public static void main(String[] args) {
int r1 = 2, c1 = 3;
int r2 = 3, c2 = 2;
int[][] firstMatrix = { {3, -2, 5}, {3, 0, 4} };
int[][] secondMatrix = { {2, 3}, {-9, 0}, {0, 4} };
// Mutliplying Two matrices
int[][] product = new int[r1][c2];
for(int i = 0; i < r1; i++) {
for (int j = 0; j < c2; j++) {
for (int k = 0; k < c1; k++) {
product[i][j] += firstMatrix[i][k] * secondMatrix[k][j];
}
}
}
// Displaying the result
System.out.println("Multiplication of two matrices is: ");
for(int[] row : product) {
for (int column : row) {
System.out.print(column + " ");
}
System.out.println();
}
}
}
Output
Multiplication of two matrices is:
24 29
6 25
In the above program, the multiplication takes place as:
|- (a11 x b11) + (a12 x b21) + (a13 x b31) (a11 x b12) + (a12 x b22) + (a13 x b32) -|
|_ (a21 x b11) + (a22 x b21) + (a23 x b31) (a21 x b12) + (a22 x b22) + (a23 x b32) _|
In our example, it takes place as:
|- (3 x 2) + (-2 x -9) + (5 x 0) = 24 (3 x 3) + (-2 x 0) + (5 x 4) = 29 -|
|_ (3 x 2) + ( 0 x -9) + (4 x 0) = 6 (3 x 3) + ( 0 x 0) + (4 x 4) = 25 _|
Also Read: