Course

Python property(): Syntax, Usage, and Examples

The property() function in Python lets you manage how class attributes are accessed and modified. Instead of calling explicit getter or setter methods, you can create attributes that behave like regular variables but include custom logic behind the scenes. This gives your code clarity without losing control.

How to Use the Python property() Function

You can create a property using either the property() function or the @property decorator.

Syntax Using the property() Function

python
class Example: def __init__(self): self._value = 0 def get_value(self): return self._value def set_value(self, new_value): self._value = new_value value = property(get_value, set_value)

This defines a value attribute with custom getter and setter methods. The property() call ties them together.

Syntax Using the @property Decorator

python
class Example: def __init__(self): self._value = 0 @property def value(self): return self._value @value.setter def value(self, new_value): self._value = new_value

This approach is more common in modern Python and easier to read.

When to Use property() in Python

Use the Python property function when you:

  • Want to control access to a class attribute without changing how it’s used.
  • Need to run logic when an attribute is read or updated.
  • Prefer cleaner syntax over calling getter/setter methods.
  • Want to validate or transform values before storing them.

These cases are common in applications that rely on clean interfaces or enforce strict rules for internal state.

Examples of Python Property in Action

Simple Getter and Setter

python
class Person: def __init__(self, name): self._name = name @property def name(self): return self._name @name.setter def name(self, new_name): if not new_name: raise ValueError("Name cannot be empty") self._name = new_name user = Person("Maya") print(user.name) # Output: Maya user.name = "Sam"

This pattern lets you treat name like a variable, but with validation baked in.

Read-Only Property

python
class Temperature: def __init__(self, celsius): self._celsius = celsius @property def fahrenheit(self): return self._celsius * 9/5 + 32 t = Temperature(0) print(t.fahrenheit) # Output: 32.0

You get a derived value as a regular attribute without exposing a setter.

Write-Only Property

python
class PasswordManager: def __init__(self): self._hashed_password = None @property def password(self): raise AttributeError("Password is write-only") @password.setter def password(self, plain_text): self._hashed_password = hash(plain_text) manager = PasswordManager() manager.password = "mysecret"

This is useful when storing sensitive data like passwords.

Learn More About Python Properties

property() vs property decorator

Both property() and @property achieve the same goal. The decorator syntax is preferred for readability. The manual property() function is useful when you’re defining multiple properties dynamically or want more control.

python
# Using property() class Demo: def __init__(self): self._value = 0 def get_value(self): return self._value def set_value(self, val): self._value = val value = property(get_value, set_value)

Python Property Setter and Getter Naming

Keep getter/setter method names consistent. Using the same name across the property, getter, and setter maintains clarity:

python
@property def count(self): return self._count @count.setter def count(self, value): self._count = value

Avoid unrelated names like get_count() and modify_count() unless you’re using the property() function explicitly.

Cached Property in Python

You can improve performance with functools.cached_property. It caches the result of a method the first time it’s accessed:

python
from functools import cached_property class Circle: def __init__(self, radius): self.radius = radius @cached_property def area(self): print("Calculating area...") return 3.14 * self.radius ** 2 c = Circle(5) print(c.area) # Calculates once print(c.area) # Uses cached result

This is useful for expensive calculations that don’t need to rerun unless the state changes.

Abstract Property in Python

You can define abstract properties in base classes using the abc module:

python
from abc import ABC, abstractmethod class Animal(ABC): @property @abstractmethod def sound(self): pass

Subclasses must implement the sound property, ensuring a consistent interface.

Python Properties in Data Classes

With Python 3.8+, data classes can use properties too:

python
from dataclasses import dataclass @dataclass class Item: _price: float @property def price(self): return round(self._price, 2) item = Item(12.3456) print(item.price) # Output: 12.35

This allows formatting, conversion, or validation on access.

Check If Property Exists in Python

To see if an attribute is a property, use:

python
isinstance(type(obj).__dict__["attr_name"], property)

Or, catch an AttributeError when accessing properties that aren’t set.

Real-World Use Cases

Form Validation

When building forms, properties help you validate data before saving it:

python
class Form: def __init__(self): self._email = "" @property def email(self): return self._email @email.setter def email(self, value): if "@" not in value: raise ValueError("Invalid email") self._email = value

Data Transformation

Transform and store data behind the scenes without changing the public interface:

python
class Order: def __init__(self, amount): self._amount = amount @property def tax(self): return self._amount * 0.2

Simplify APIs

Libraries use properties to provide simpler interfaces without exposing internal methods.

Best Practices for Using Python Properties

  • Use properties for clean syntax, not just because you can.
  • Only add logic when you need to validate, transform, or compute on access.
  • Keep properties fast—don’t hide long computations behind them unless cached.
  • Combine with @classmethod or @staticmethod only when it makes sense.

The Python property function lets you create smart attributes that look like variables but act like functions. Whether you want to add validation, lazy calculations, or restrict access, properties give you the flexibility to keep your class interface clean and intuitive.

You can use the Python property decorator for readability, or stick with the base function if you’re building classes dynamically. Either way, understanding properties in Python helps you write more maintainable, professional code.